

GHGT-14 conference, Melbourne, Australia - Session 6A – 23rd October 2018

Optimization of the post-combustion CO₂ capture process applied to cement plant flue gases: parametric study with different solvents and configurations combined with intercooling <u>Dr Lionel Dubois</u> and Prof. Diane Thomas

Partners:

Dr Lionel Dubois

Research Coordinator CO₂ Capture and Conversion Chemical & Biochemical Process Engineering Unit Faculty of Engineering - University of Mons (Belgium) <u>lionel.dubois@umons.ac.be</u>

Outline

Context of the study

Simulation principles

Simulation results

Conclusions & Perspectives

ECRA Academic Chair

In 2013, ECRA (European Cement Research Academy) and University of Mons signed an important scientific agreement related to the creation of a privileged partnership and the development, within the University, of an academic Chair financed by ECRA.

The main objective of this academic Chair is to create a centre of scientific expertise in the specific field of "carbon capture in cement production and its re-use", and promote research and innovation.

Dr Lionel Dubois | Chemical & Biochemical Process Engineering Unit | 23-10-2018

CO₂ emissions – Roadmap and actions

Cement plants \approx 30% of the industrial CO₂ emissions

UMONS

from CO₂ to energy

CCSU (Carbon Capture Storage Utilization)

Paving the way — A selection of today's carbon capture and utilization pathways

Source: The Pembina Institute with Integrated CO₂ Network (ICO2N)

CO₂ Capture Techniques

UMONS

from CO₂ to energy

Absorption-Regeneration Process

Conventional configuration:

General principles of the simulations

UMONS

rachair

from CO₂ to energy

Base case simulation flow sheet

Summary of previous simulation results

 \rightarrow Lower E_{regen} with MDEA 10 wt.% + PZ 30 wt.%

→LVC and RVC configurations leading to the minimum of E_{regen} (heat recovery process modifications)

Dr Lionel Dubois | Chemical & Biochemical Process Engineering Unit | 23-10-2018

Process configurations

Dr Lionel Dubois | Chemical & Biochemical Process Engineering Unit | 23-10-2018

Process configurations

CO₂ capture process: advanced flow sheet

• Other solvents than MEA 30 wt.%:

PZ (piperazine) alone OR activated blend MDEA (methyldiethanolamine) + PZ

C_{amine,tot} = 40 wt.%

UMONS

-achair

from CO₂ to energy

- Alternative process configurations:
- Temperature level adjustment
- Better energy integration
- Promotion of heat recovery
- Water-wash & InterCooling Absorber ICA:
- Less amine(s) emissions to the atmosphere
- Optimized absorption temperature
- ICA leads to higher solvent CO₂ loading

Process configurations

CO₂ capture process: advanced flow sheet

Dr Lionel Dubois | Chemical & Biochemical Process Engineering Unit | 23-10-2018

from CO₂ to energy

Indicators used for the results comparison

• <u>Specific solvent regeneration energy</u>: $E_{regen} [GJ/t_{CO2}] = \frac{\Phi_{boiler}}{G_{CO_2,produced}}$

 Φ_{boiler} [GJ/h] = heat duty provided at the stripper's bottom G_{CO2,produced} [t_{CO2}/h] = the rate of CO₂ generated at the stripper's top (outlet of the condenser)

• Total equivalent work:
$$W_{equ} \left[GJ/t_{CO2} \right] = E_{regen} \left(1 - \frac{T_C + 273.15}{T_H + 273.15} \right) \eta_{turbine} + E_{pumps} + E_{LVC/RVC,compressor}$$

= steam condensation temperature in the turbine of the power plant providing the electrical energy to the cement plant (≈ 40°C)

- = steam temperature in the reboiler \approx T_{regen}+ 10°C
- = turbine efficiency (\approx 75%),

 E_{pumps} and $E_{LVC/RVC, compressor}$ [GJ/t_{CO2}] = electrical energies used to run the pumps and the LVC/RVC compressor

• <u>Utilities costs</u>: $C_{utilities}[\notin/t_{CO2}] = C_{electricity} + C_{cooling water} + C_{steam}$

 T_{C} [°C]

Т_н [°C]

UMONS

η_{turbine} [%]

from CO2 to enera

 Karimi, M., Hillestad, M., Svendsen, H.F., 2011. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO₂ capture. Chem. Eng. Des. 89, 1229–1236.

Intercooling parameters optimization

Intercooling stage (n): •

17

16

15

14

13

12

11

10

9

8

7 6

5

4 3

Column stage N°

UMONS

3.35 $L = 22 \text{ m}^3/\text{h}$ $L = 22 \text{ m}^3/\text{h}$, $T_{\text{intercool}} = 40^{\circ}\text{C}$ T_{intercool} = 40°C 3.30 Without intercooling 3.25 Intercool-stage-2 _{regen} (GJ/t_{CO2}) 3.20 -Intercool-stage-5 Intercool-stage-8 3.15 Intercool-stage-11 3.10 -Intercool-stage-14 3.05 3.00 2.95 2.90 1 2 3 12 13 14 15 16 17 Intercooling stage (N°) 70 80 90 40 50 60 Temperature (°C) → Stage leading to lowest temperature \neq stage lowest E_{regen} Stage minimizing $E_{regen} = 8/17$ (6 to 10 = quite similar results) Oeccachair Dr Lionel Dubois | Chemical & Biochemical Process Engineering Unit | 23-10-2018 from CO₂ to energy

Illustration for MEA 30 wt.% and conventional configuration

Intercooling parameters optimization

Illustration for MEA 30 wt.% and conventional configuration

• Intercooling temperature:

UMONS

chair

from CO₂ to energy

• Intercooling flow rate:

 \rightarrow Cooling temperature fixed at 40°C but interesting if T \downarrow

 \rightarrow If intercooling flow rate \uparrow , $E_{regen} \downarrow$

Dr Lionel Dubois | Chemical & Biochemical Process Engineering Unit | 23-10-2018

Water-wash effect for different solvents & configurations

Illustration of the water-wash effect on the amine(s) emissions (mol. fraction) in the <u>absorber</u> outlet gas

Solvent	Gas without WW	Gas with WW	
MEA 30 wt.%	MEA: 107 ppm	MEA: 2 10 ⁻⁸ ppm	
PZ 40 wt.%	PZ: 114 ppm	PZ: 2 10 ⁻¹⁰ ppm	≈ traces
	MDEA: 1 ppm	MDEA: 1 10 ⁻¹⁵ ppm	
WIDEA 10 WI.% + PZ 30 WI.%	PZ: 44 ppm	PZ: 5 10 ⁻¹³ ppm	

Illustration of the water-wash effect on the amine(s) emissions (mol. fraction) in the stripper outlet gas

Solvent	Gas without WW	Gas with WW
MEA 30 wt.%	MEA: 8 10 ⁻⁵ ppm	MEA: 1.5 10 ⁻⁸ ppm
PZ 40 wt.%	PZ: 2 10 ⁻⁷ ppm	PZ: 2 10 ⁻¹⁷ ppm
	MDEA: 1 10 ⁻¹⁰ ppm	MDEA: 7 10 ⁻²⁰ ppm
MDEA 10 Wt.% + PZ 30 Wt.%	PZ: 4 10 ⁻⁹ ppm	PZ: 5 10 ⁻¹⁸ ppm

 \rightarrow In all cases: WW allows to \downarrow amine(s) emissions

 $L_{water,WW} = 65 \text{ kg/h}$

 $T_{water.WW} = 40^{\circ}C$

Global comparison without/with Intercooling

			Conventional configuration			LVC	configuratio	on	RVC configuration			
			MEA PZ MDEA+PZ			MEA	PZ	MDEA+PZ	MEA	PZ	MDEA+PZ	
′G) _{vol,opt} (m³/m³) _{ot} (m³/h)		without with	5.09 10 ⁻³	3.16 10 ⁻³	3.04 10 ⁻³	5.30 10 ⁻³	6.07 10 ⁻³	3.54 10 ⁻³	7.33 10 ⁻³	6.57 10 ⁻³	3.54 10 ⁻³	
	(m³/m³)		22.49	13.97	13.43	23.42	26.83	15.64	32.40	29.03	15.65	
	(m³/h)		5.02 10 ⁻³	4.56 10 ⁻³	4.57 10 ⁻³	5.48 10 ⁻³	4.57 10 -3	3.20 10 -3	7.31 10 -3	4.56 10 ⁻³	4.57 10 -3	
			22.21	20.15	20.20	24.23	20.20	14.14	32.29	20.15	20.20	

→ $(L/G)_{vol.} \approx$ or \neq with intercooling depending on the solvent & configuration

Global comparison without/with Intercooling

			Conventional configuration		LVC configuration			RVC configuration			
			MEA PZ MDEA+PZ		MEA PZ MDE/		MDEA+PZ	-PZ MEA P		Z MDEA+PZ	
$\alpha_{\rm CO2,rich}$	(mol/mol)	WITHOUT	0.51	0.73	0.78	0.51	0.67	0.74	0.47	0.53	0.75
	(mor/mor)	WITH	0.53	0.80	0.72	0.52	0.75	0.73	0.51	0.80	0.72
$lpha_{CO2,lean}$		WITHOUT	0.21	0.18	0.17	0.20	0.45	0.27	0.25	0.27	0.27
	(moi/moi)	WITH	0.24	0.47	0.36	0.25	0.41	0.46	0.42	0.47	0.36

UMONS

ecrachair

from CO₂ to energy

→ No major effect of intercooling (slight \uparrow) on α_{CO2} except PZ 40% with RVC

Dr Lionel Dubois | Chemical & Biochemical Process Engineering Unit | 23-10-2018

Global comparison without/with Intercooling

		Conventional configuration			LVC	RVC configuration				
		MEA	PZ	MDEA+PZ	MEA	PZ	MDEA+PZ	MEA	PZ	MDEA+PZ
E _{pump}	WITHOUT	1.61 10 ⁻³	4.99 10 ⁻³	2.33 10 ⁻³	1.68 10 ⁻³	2.36 10 ⁻²	1.37 10 ⁻²	6.42 10 ⁻³	2.56 10-2	1.37 10-2
(GJ/t _{co2})	WITH	1.59 10 ⁻³	8.66 10 ⁻³	5.60 10 ⁻³	3.99 10 -3	1.78 10 -2	1.20 10⁻²	5.26 10 -3	1.75 10 ⁻²	1.77 10 -2
E _{cooler}	WITHOUT	- 1.51	- 0.60	- 0.44	- 1.04	- 1.19	- 0.30	- 2.36	- 2.04	- 0.24
(GJ/t _{co2})	WITH	- 1.12	- 0.92	- 0.94	- 0.87	- 0.96	- 0.76	- 1.19	- 0.86	- 0.95
E _{cooling ICA} (GJ/t _{CO2})	WITHOUT	-	-	-	-	-	-	-	-	-
	WITH	- 0.96	- 0.85	- 0.77	- 1.12	- 0.62	- 0.82	- 0.92	- 0.86	- 0.78
E _{LVC/RVC} ,compressor	WITHOUT	-	-	-	8.28 10 ⁻²	65 10 ⁻²	37 10 ⁻²	13.6 10 ⁻²	65 10 ⁻²	29 10 ⁻²
(GJ/t _{co2})	WITH	-	-	-	8.59 10 ⁻²	52.9 10⁻²	38 10⁻²	11.1 10 ⁻²	41.5 10 ⁻²	40.5 10⁻²
E _{regen}	WITHOUT	3.36	3.14	2.75	2.91	2.57	2.43	2.95	2.63	2.39
(GJ/t _{co2})	WITH	2.96	2.89	2.67	2.74	2.50	2.31	2.82	2.26	2.19

→ Cooling energy for intercooling ≈ cooling energy for lean solution before absorber

 \rightarrow Globally these other energy consumptions clearly << E_{regen}

Global comparison without/with Intercooling

Equivalent work:

Utilities costs:

→ Intercooling leads to a decrease of equivalent work in all cases

→ Utilities costs can be lower thanks to intercooling depending on the case

Global comparison without/with Intercooling

Regeneration energy:

→ Intercooling leads to supplementary energy savings

UMONS

∟achaır

from CO₂ to energy

→ Minimum of E_{regen} with MDEA+PZ + RVC + IC: 2.19 GJ/t_{CO2}
→ Globally 35% E_{regen} savings in comparison with base case

Dr Lionel Dubois | Chemical & Biochemical Process Engineering Unit | 23-10-2018

22

Conclusions & Perspectives

- Interest of alternative process configurations (LVC/RVC) to \downarrow E_{regen}
- Intercooling leads to supplementary energy savings
- PZ-based solutions lead to the lowest E_{regen} values (min = 2.19 GJ/t_{CO2})
- In progress with:

...

- Other solvents (e.g. DEA + PZ, demixing solvents)
- Other cement flue gas (partial oxy-fuel = high p_{CO2})
- Further analyzes on correlations influence (e.g. interfacial surface area, transfer coefficients, etc.)

GHGT-14 conference, Melbourne, Australia - Session 6A – 23rd October 2018

THANKS VERY MUCH FOR YOUR ATTENTION!

<u>QUESTIONS?</u>

Dr Lionel Dubois

Research Coordinator CO₂ Capture and Conversion Chemical & Biochemical Process Engineering Unit Faculty of Engineering - University of Mons (Belgium) <u>lionel.dubois@umons.ac.be</u>

Partners:

Aker's MTU vs CASTOR/CESAR pilot

Parameters	MTU from Aker tested at Brevik Cement plant	CASTOR/CESAR pilot used for the simulations
Absorber diameter	0.40 m	1.10 m
Absorber packing height	max 18.00 m	max 17.00 m (N _{stage} = 17)
Absorber pressure	-	1.2 bar
Desorber diameter	0.32 m	1.10 m
Desorber packing height	8.00 m	10.00 m (N _{stage} = 10)
Desorber pressure	-	2 bar
Packing type	MellapakPlus	Random packing IMTP 50
Gas flow rate	450 m³⁄h	4000 m³⁄h
Solvent circulation rate	max 4 m³∕h	max 40 m³/h
CO ₂ capture efficiency	90%	90%
Captured CO ₂ flow from Brevik flue gas	≈ 0.15 t _{co2} /h	≈ 1.5 t _{co2} /h
		≈ x 10

Global comparison without/with Intercooling

		Conventional configuration		LVC	RVC configuration					
		MEA	PZ	MDEA+PZ	MEA	PZ	MDEA+PZ	MEA	PZ	MDEA+PZ
Epump	WITHOUT	1.61 10 ⁻³	4.99 10 ⁻³	2.33 10 ⁻³	1.68 10 ⁻³	2.36 10 ⁻²	1.37 10 ⁻²	6.42 10 ⁻³	2.56 10 ⁻²	1.37 10-2
(GJ/t _{co2})	WITH	1.59 10 ⁻³	8.66 10 ⁻³	5.60 10 ⁻³	3.99 10 ⁻³	1.78 10⁻²	1.20 10 ⁻²	5.26 10 -3	1.75 10 ⁻²	1.77 10 -2
E _{cooler}	WITHOUT	- 1.51	- 0.60	- 0.44	- 1.04	- 1.19	- 0.30	- 2.36	- 2.04	- 0.24
(GJ/t _{co2})	WITH	- 1.12	- 0.92	- 0.94	- 0.87	- 0.96	- 0.76	- 1.19	- 0.86	- 0.95
E _{cooling ICA}	WITHOUT	-	-	-	-	-	-	-	-	-
(GJ/t _{co2})	WITH	- 0.96	- 0.85	- 0.77	- 1.12	- 0.62	- 0.82	- 0.92	- 0.86	- 0.78
E _{condenser} (GJ/t _{CO2})	WITHOUT	- 1.94	- 0.93	- 0.71	- 0.91	- 0.82	- 0.60	- 1.52	- 0.73	- 0.48
	WITH	- 1.89	- 0.65	- 0.63	- 0.69	- 0.69	- 0.62	- 0.88	- 0.55	- 0.51
E _{LVC/RVC,compressor}	WITHOUT	-	-	-	8.28 10 ⁻²	65 10 ⁻²	37 10 ⁻²	13.6 10 ⁻²	65 10 ⁻²	29 10 ⁻²
(GJ/t _{co2})	WITH	-	-	-	8.59 10 ⁻²	52.9 10 ⁻²	38 10⁻²	11.1 10 ⁻²	41.5 10⁻²	40.5 10 ⁻²
E _{regen}	WITHOUT	3.36	3.14	2.75	2.91	2.57	2.43	2.95	2.63	2.39
(GJ/t _{co2})	WITH	2.96	2.89	2.67	2.74	2.50	2.31	2.82	2.26	2.19
W _{equ} (GJ/t _{CO2})	WITHOUT	0.59	0.71	0.60	0.59	1.24	0.91	0.65	1.26	0.82
	WITH	0.50	0.64	0.58	0.55	1.22	0.87	0.62	1.16	0.77
C _{utilities}	WITHOUT	31.54	29.25	25.89	28.55	25.94	23.70	29.25	27.42	24.13
(€/t _{CO2})	WITH	29.89	29.00	27.38	27.10	25.82	24.59	30.84	24.47	23.81

